Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Article | IMSEAR | ID: sea-200765

ABSTRACT

Concerned with the construction and design of novel biocatalysts, the enzyme engineering served to overcome the limitations of native enzymes, in order to create biocatalysts with tailored functions, to facilitate industrial applications. The enzymes, being recognized by screening and discovery workflows and further tailored by engineering platforms, are of immense potential as improved biocatalysts. Functional metagenomics is a powerful tool to identify novel enzymes followed by the construction of metagenome-based enzyme libraries. And the subsequent screening of these enzyme libraries is in turn facilitated by ultra-high-throughput-based, for example FACS or microfluidics, enzyme engineering technologies. Relies on the compartmentalization of reaction components, in order to detect and measure assay signal within the reaction compartments, the enzyme engineering platforms are designed which include cell-as-compartment platforms, droplet-based platforms andmicro-chamber-based platforms. The metagenomics approach and high-throughput screening by these three prime enzyme engineer platforms are the focus of this review.

2.
Electron. j. biotechnol ; 39: 91-97, may. 2019. ilus, graf, tab
Article in English | LILACS | ID: biblio-1052260

ABSTRACT

BACKGROUND: Lipases are extensively exploited in lots of industrial fields; cold-adapted lipases with alkali-resistance are especially desired in detergent industry. Penicillium cyclopium lipase I (PCL) might be suitable for applications of detergent industry due to its high catalytic efficiency at low temperature and relatively good alkali stability. In this study, to better meet the requirements, the alkali stability of PCL was further improved via directed evolution with error-prone PCR. RESULTS: The mutant PCL (N157F) with an improved alkali stability was selected based on a high-throughput activity assay. After incubating at pH 11.0 for 120 min, N157F retained 70% of its initial activity, which was 23% higher than that of wild type PCL. Combined with the three-dimensional structure analysis, N157F exhibited an improved alkali stability under the high pH condition due to the interactions of hydrophilicity and ß-strand propensity. Conclusions: This work provided the theoretical foundation and preliminary data for improving alkali stability of PCL to meet the industrial requirements, which is also beneficial to improving alkali-tolerance ability of other industrial enzymes via molecular modification.


Subject(s)
Penicillium/enzymology , Enzyme Stability , Detergent Industry , Lipase/metabolism , Penicillium/isolation & purification , Penicillium/genetics , Polymerase Chain Reaction/methods , Cold Temperature , Alkalies , Biocatalysis , Hydrophobic and Hydrophilic Interactions , Hydrogen-Ion Concentration , Lipase/isolation & purification , Lipase/genetics , Mutation
3.
Electron. j. biotechnol ; 31: 84-92, Jan. 2018. graf, tab, ilus
Article in English | LILACS | ID: biblio-1022139

ABSTRACT

Background: Cellulolytic enzymes of microbial origin have great industrial importance because of their wide application in various industrial sectors. Fungi are considered the most efficient producers of these enzymes. Bioprospecting survey to identify fungal sources of biomass-hydrolyzing enzymes from a high-diversity environment is an important approach to discover interesting strains for bioprocess uses. In this study, we evaluated the production of endoglucanase (CMCase) and ß-glucosidase, enzymes from the lignocellulolytic complex, produced by a native fungus. Penicillium sp. LMI01 was isolated from decaying plant material in the Amazon region, and its performance was compared with that of the standard isolate Trichoderma reesei QM9414 under submerged fermentation conditions. Results: The effectiveness of LMI01 was similar to that of QM9414 in volumetric enzyme activity (U/mL); however, the specific enzyme activity (U/mg) of the former was higher, corresponding to 24.170 U/mg of CMCase and 1.345 U/mg of ß-glucosidase. The enzymes produced by LMI01 had the following physicochemical properties: CMCase activity was optimal at pH 4.2 and the ß-glucosidase activity was optimal at pH 6.0. Both CMCase and ß-glucosidase had an optimum temperature at 60°C and were thermostable between 50 and 60°C. The electrophoretic profile of the proteins secreted by LMI01 indicated that this isolate produced at least two enzymes with CMCase activity, with approximate molecular masses of 50 and 35 kDa, and ß-glucosidases with molecular masses between 70 and 100 kDa. Conclusions: The effectiveness and characteristics of these enzymes indicate that LMI01 can be an alternative for the hydrolysis of lignocellulosic materials and should be tested in commercial formulations.


Subject(s)
Penicillium/enzymology , Cellulase/biosynthesis , beta-Glucosidase/biosynthesis , Oligosaccharides , Temperature , Trichoderma/enzymology , Enzyme Stability , Cellulase/metabolism , beta-Glucosidase/metabolism , Amazonian Ecosystem , Biocatalysis , Fermentation , Hydrogen-Ion Concentration , Hydrolysis , Lignin/metabolism
4.
Electron. j. biotechnol ; 28: 7-13, July. 2017. tab, graf, ilus
Article in English | LILACS | ID: biblio-1015723

ABSTRACT

Background: Laccases are copper-containing enzymes which have been used as green biocatalysts for many industrial processes. Although bacterial laccases have high stabilities which facilitate their application under harsh conditions, their activities and production yields are usually very low. In this work, we attempt to use a combinatorial strategy, including site-directed mutagenesis, codon and cultivation optimization, for improving the productivity of a thermo-alkali stable bacterial laccase in Pichia pastoris. Results: A D500G mutant of Bacillus licheniformis LS04 laccase, which was constructed by site-directed mutagenesis, demonstrated 2.1-fold higher activity when expressed in P. pastoris. The D500G variant retained similar catalytic characteristics to the wild-type laccase, and could efficiently decolorize synthetic dyes at alkaline conditions. Various cultivation factors such as medium components, pH and temperature were investigated for their effects on laccase expression. After cultivation optimization, a laccase activity of 347 ± 7 U/L was finally achieved for D500G after 3 d of induction, which was about 9.3 times higher than that of wild-type enzyme. The protein yield under the optimized conditions was about 59 mg/L for D500G. Conclusions: The productivity of the thermo-alkali stable laccase from B. licheniformis expressed in P. pastoris was significantly improved through the combination of site-directed mutagenesis and optimization of the cultivation process. The mutant enzyme retains good stability under high temperature and alkaline conditions, and is a good candidate for industrial application in dye decolorization.


Subject(s)
Pichia/metabolism , Laccase/biosynthesis , Laccase/genetics , Bacillus licheniformis/enzymology , Temperature , Yeasts , Enzyme Stability , Catalysis , Mutagenesis , Laccase/metabolism , Coloring Agents/metabolism , Hydrogen-Ion Concentration
5.
Electron. j. biotechnol ; 16(3): 4-4, May 2013. ilus, tab
Article in English | LILACS | ID: lil-684002

ABSTRACT

Background: New enzymes for biotransformations can be obtained by different approaches including directed mutagenesis and in vitro evolution. These mutants have to be efficiently produced for laboratory research on bioreactions as well as for process development. In the framework of a European ERA-IB project, two different types of enzymes (ammonia lyases and aminotransferases) have been selected as biocatalysts for the synthesis of industrially relevant amines. New mutant enzymes have been obtained: a) aspartases able to recognize β-amino acids; b) ω-transaminases with improved activity. The objectives are to find out a common operational strategy applicable to different mutants expressed in E. coli with the same initial genetic background, the development of an integrated process for production and the preparation of stable useful biocatalysts. Results: Mutant enzymes were expressed in E. coli BL21 under the control of isopropylthiogalactoside (IPTG) inducible promoter. The microorganisms were grown in a formulated defined medium and a high-cell density culture process was set up. Fed-batch operation at constant specific growth rate, employing an exponential addition profile allowed high biomass concentrations. The same operational strategy was applied for different mutants of both aspartase and transaminase enzymes, and the results have shown a common area of satisfactory operation for maximum production at low inducer concentration, around 2 μmol IPTG/g DCW. The operational strategy was validated with new mutants and high-cell density cultures were performed for efficient production. Suitable biocatalysts were prepared after recovery of the enzymes. The obtained aspartase was immobilized by covalent attachment on MANA-agarose, while ω-transaminase biocatalysts were prepared by entrapping whole cells and partially purified enzyme onto Lentikats (polyvinyl alcohol gel lens-shaped particles). Conclusions: The possibility of expressing different mutant enzymes under similar operation conditions has been demonstrated. The process was standardized for production of new aspartases with β-amino acid selectivity and new ω-transaminases with improved substrate acceptance. A whole process including production, cell disruption and partial purification was set up. The partially purified enzymes were immobilized and employed as stable biocatalysts in the synthesis of chiral amines.


Subject(s)
Amines/metabolism , Transaminases/metabolism , Ammonia-Lyases/metabolism , Bioreactors , Culture Media , Enzymes, Immobilized , Escherichia coli , Biocatalysis , Batch Cell Culture Techniques , Amines/chemistry , Transaminases/genetics , Transaminases/chemistry , Ammonia-Lyases/genetics , Ammonia-Lyases/chemistry , Mutation
6.
Article in English | IMSEAR | ID: sea-161784

ABSTRACT

The synthesis and characterization of aromatic alcohols such as 1-(4-bromo phenyl) ethanol, 1-(4-Hydroxy-3-methoxyphenyl) ethanol, (4-Hydroxy-3-methoxy-benzyl alcohol) employing biotransformation (using whole cells of Baker’s Yeast in their free as well as immobilized form in mixtures of glycerol and water) and Electrochemical technique are reported. The electrochemical behavior of 4-bromoacetophenone, 4-Hydroxy-3-methoxyacetophenone, and 4-Hydroxy-3- methoxybenzaldehyde was analyzed using cyclic voltammetry at glassy carbon electrode (GCE) and constant current electrolysis. Effect of scan rate and pH on the reduction peaks has been calculated. The kinetic parameters were also calculated and the process was found to be diffusion controlled. The products obtained were purified & then characterized by spectroscopic techniques. All the compounds have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties. Biocatalytic and Electrochemical procedures were found to be more effective, safe, economical, environmental friendly, easy to handle. These green methodologies over conventional chemical methods provide new and improved synthetic routes to many valuable compounds.

7.
Article in English | IMSEAR | ID: sea-161681

ABSTRACT

Incorporation of green methodology via biocatalytic and electrochemical steps using Baker’s Yeast and electrons as reducing agent respectively have been employed as a novel and efficient route to furnish relevent chiral building blocks for fine chemicals and pharmaceuticals. Reduction of selected ketones such as 2-methylcyclohexanone, 3-methylcyclohexanone, 4-methylcyclohexanone and ethyl-2-oxocyclopentanecarboxylate have been carried out by biotransformation (using whole cells of Baker’s Yeast in their free as well as immobilized form in mixtures of glycerol and water) and via electrochemical method to the corresponding alcohols. Optimum conditions for electrochemical reduction like solvent, supporting electrolyte, reduction potential and pH were determined at glassy carbon electrode employing cyclic voltammetric technique. The effect of scan rate, pH were also studied. The electrochemical reduction was carried out at constant current using stainless steel (SS-316) electrodes. The products obtained were purified & then the results of both reduction routes (biocatalytic & electrochemical) were compared and then characterized by spectroscopic techniques.

SELECTION OF CITATIONS
SEARCH DETAIL